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Nonstationary magnetization dynamics driven by spin transfer torque
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This paper shows that the presence of two dynamical regimes, characterized by different precessional axes,
is the origin of the nonmonotonic behavior of the output integrated power for large-amplitude magnetization
precession driven by spin-polarized current in nanoscale exchange-biased spin valves. In particular, an abrupt
loss in the integrated output power exists at the transition current between those two regimes. After the
introduction of a time-frequency analysis of magnetization dynamics based on the wavelet transform, we
performed a numerical experiment by means of micromagnetic simulations. Our results predicted that, together
with a modulation of the frequency of the main excited mode of the magnetization precession, at high non-
linear dynamical regime the instantaneous output power of the spin-torque oscillator can disappear and then

reappear at nanosecond scale.
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I. INTRODUCTION

The discovery that a spin-polarized current interacting
with a nanomagnet can produce several different types of
magnetic dynamics'-? opens perspectives in applied physics
for spintronic technology.>® These offer the possibility of
applications that include at least magnetoresistive random
access memories,” nano-oscillators,”® and radiofrequency
detectors.!? Frequency’ and time® domain measurements of
magnetoresistance signal in the “state of the art” spintronic
devices (spin valves,!' magnetic tunnel junctions,'? point-
contact geometries'®) show very rich dynamical stability dia-
grams with switching between static magnetic states and dif-
ferent steady-state precessions characterized by uniform and
nonuniform magnetization patterns. In particular, the fre-
quency, the linewidth, and the microwave output power of
the precessions show strong dependence on external field
and current.'*

In addition, exchange bias nanoscale spin-valves with a
Py-free layer (Py=Nig,Fe,,) of elliptical cross-sectional area
exhibit dynamics with series of jumps in frequency between
stationary nonlinear modes characterized by either different
spatial distribution'>! and different Hausdorff dimension.!”
Those measurements also show, for some values of current
and field, a nonstationary magnetization dynamics related to
nanosecond switching between a dynamical mode and a
static magnetic configuration or between different dynamical
modes.'® In the latter case, this nonstationary regime is char-
acterized by a spectrum with two well-defined peaks in fre-
quency, and it is observed before that large-amplitude mag-
netic precession is driven or when a device is biased near the
boundary between the jumps of two different modes. In the
large-amplitude dynamical regime, while the frequency of
the main excited mode monotonically decreases as function
of the current, the integrated output power shows nonmono-
tonic behavior with a well-defined minimum at least for the
device studied in Ref. 15.

Here, we first performed a numerical experiment based on
the solution of the Landau-Lifshitz-Gilbert-Slonczewski'®!”
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(LLGS) equation in order to identify the origin of the mini-
mum in the integrated output power. Second, we present a
continuous wavelet analysis?® of nonstationary magnetiza-
tion dynamics driven by spin-polarized current and repro-
duce the results of nonstationary regime of experimental di-
rect time-domain electrical measurements in nanoscale
exchange biased spin-valves obtained for a four-nanosecond
windowed Fourier transform. Finally, we predicted by com-
bining micromagnetic simulations and wavelet analysis that
the excited modes of a spin-torque nano-oscillator show to-
gether to a frequency modulation?' a nanosecond intermittent
disappearing and reappearing of the instantaneous micro-
wave output power.

II. NUMERICAL DETAILS

We simulate exchange-biased spin valves
Py(4 nm)(free layer)/Cu(8 nm)/Py(4 nm)(pinned layer)/
Ir,oMngy/ (8 nm) with elliptical cross sectional area (130
X 60 nm?) in the same experimental framework of Ref. 16.
We use a saturation magnetization Mg=650X 10° A/m, a
free-layer damping a=0.025, a pinned layer damping ap
=0.2, and an exchange constant of A=1.3 X 10~"" J/m.?2 For
the spin-torque efficiency &(6) and the magnetoresistance
r(6), we use the formulation developed by Slonczewski?® for
symmetric spin valves

e(0) =0.5PA?*/[1+ A%+ (1 - A?)cos(6)]

and r(0)=[1-cos?(6/2)]/[1+x cos*(6/2)], where A>=y+1,
x is the giant magnetoresistance asymmetry parameter, P is
the current spin-polarization factor, and the parameter values
x=1.5 and P=0.38 have been obtained by fitting to the ex-
perimentally measured ensemble-average switching time.'’
The pinned layer is exchange biased in the plane of the
sample at an angle of 45° with respect to the major axis of
the ellipse, with an effective exchange field of 75 mT. We
simulate the entire spin valve including the effects of the
back action of the torque to the pinned layer and a spin
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FIG. 1. (a) Temporal evolution of normalized y component of
the average magnetization for k/=6.3 mA (top, an offset of 2 is
applied) and «/=8 mA (bottom). The axis of the magnetization
oscillation (mf in figure) is in the former case between 0° and —45°
and in the latter case between —45° and —125°. Temporal evolution
of normalized x component of the average magnetization for (a)
k[=6.3 mA and (b) kI=8 maA.

torque with a stochastic component (we include thermal fluc-
tuations also in the pinned layer).??

III. RESULTS

In order to qualitatively explain the nonmonotonic behav-
ior of the integrated output power and to compare our nu-
merical results directly to the experimental data (Ref. 15,
Fig. 7), we study large-amplitude magnetization dynamics
for an external field H ;=68 mT applied along —45° with
respect to the easy axis of the ellipse. We identify the pro-
portionality factor («) (Ref. 15) between experimental and
applied currents (I) by fitting the frequency versus current
data; we computed k=0.34. The integrated power signal am-
plitude shows a minimum for a current around 7.5 mA which
does not correspond to any nonstationary region or jump
between different nonlinear dynamical modes. Near this cur-
rent value, our results show two different dynamical regimes:
those that are characterized by a magnetization oscillation
axis [my in Fig. 1(a)] at an angle between 0° and —45° (re-
gime A, lower current) or between —45° and —125° (regime
B, larger current). Figure 1 shows the time evolution of the
normalized average magnetization [(my) (a) and (my) (b),
(c)] for kI=6.3 mA in regime A (frequency of the main
mode f=33 GHz) and «/=8 mA in regime B
(f=2.8 GHz). These magnetization time traces are qualita-
tively similar to the real-time magnetoresistance signal mea-
sured via a microwave storage oscilloscope and displayed in
Figs. 4(b) and 4(c) of Ref. 16. For large-amplitude magneti-
zation dynamics, first the integrated output power increases
as function of current (regime A) then it decreases abruptly
(in the transition from regime A to regime B), finally it in-
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creases as function of current (regime B). Simulations per-
formed considering the pinned layer fixed did not show these
two dynamical regimes; we argue that this is the main point
which gives the different results between our micromagnetic
simulations and the ones published in Ref. 15.

Concerning the same kind of devices, experimental data
published in Ref. 16 show that nonstationary magnetization
dynamics is driven before of the large-amplitude magnetiza-
tion precession. In particular, for /=4.5 mA and H_
=60 mT, the power spectrum of the real-time voltage signal
[for a signal of 20 ns see Fig. 6(¢) in Ref. 16] captured via
microwave storage oscilloscope (the voltage is directly pro-
portional to the magnetoresistive signal) shows two excited
modes P, and P, (fp;=3.9 GHz and fp,=4.6 GHz). By per-
forming the Fourier transform with a window time of 4 ns,
either P, or P, can be observed [see Figs. 6(f) and 6(g) in
Ref. 16]. This result shows the nonperiodic origin of this
magnetization precession; furthermore the presence of those
two modes at second scale also shows their nontransient ori-
gin [see Fig. 6(d) in Ref. 16]. From computational point of
view, it is important to find out a tool which systematically
gives information about the time localization of the excited
modes. We use a wavelet-based analysis (the wavelet is the
natural generalization of the windowed Fourier transform)
and differently by other approaches, we systematically iden-
tify the scale set directly from the power spectrum related to
r(r) (magnetoresistance time-domain signal). The continuous
wavelet transform of a function r(z) (we consider the time
dependence of the magnetoresistance signal) is a linear trans-
form W,(u,s) given by

1 (™
W (u,s) = 7]
VS J —

where s and u being the scale and translation parameters of
the mother wavelet (), which defines the wavelet family
function as ¢, (7 :\1—;1,0(%”). In our study, in order to charac-
terize both amplitude and phase of time-domain magnetore-

sistive signal [r(7)] we use the complex Morlet wavelet fam-
1

ily = \:meﬂ”fc("”“)e‘“‘”/ 9%f5 with Fourier spectrum
\Ifu,x(f)z\s"ge‘ﬂzfl?(xf =f’e=2m where fo and fz are two
parameters [W(f) is the Fourier transform of ¢(r)]. The use
of a wavelet analysis allows to characterize a signal in the
time-frequency space to study the nonstationary behavior
(for a complete review of wavelet theory see Refs. 24 and
25). The f3 (called bandwidth parameter) can rule the band
of the complex Morlet Fourier spectrum giving narrowed
band as it increases. Consequently this parameter is corre-
lated with the frequencies we have to analyze independently
of each other. Furthermore for practical reasons fp and f.
have to be large enough to make the mean of ¢(r) arbitrarily
small.6

Our results suggest that the continue wavelet transform
W,(u,s) shows better statistical performance than any other
time-frequency analysis methods used to analyze the simu-
lated signals. Figure 2(a) (monotonic line) shows the normal-
ized integrated power spectrum of the voltage signal [inset of
Fig. 2(a)]. The slope of this curve increases rapidly close to
the high power frequencies fp; and fp, while it increases

r(t)tﬁ*(t_Tu)dt, (1)
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FIG. 2. (Color online) (a) Normalized power spectrum and in-
tegrated power spectrum of voltage signal (inset) measured for [
=4.5 mA and H=60 mT in Ref. 16. The numbers in the right
represent an example of nine points decomposition of the y axis to
identify the scale set {s;};; ¢ for the wavelet transform. (b) Wave-

let scalogram of the voltage signal displayed in the inset of Fig.
2(a).

slowly elsewhere (depending on the noise in the power spec-
trum). Given a fixed dimension N of a scale set {s;},=; y for
the wavelet family, the y axis is divided in N+2 points [Fig.
2(a) shows a decomposition for N=9, see the number in the
right] and from each point a frequency f; and a scale s; can
be obtained (e.g., for the number 3, f3=4.44 GHz and s;
=fs/f3, fs=30 GHz being the sampling frequency).

The best way to show the time-frequency characterization
of a signal is the wavelet scalogram (WS). Furthermore the
integral of the WS of a signal over the time can be correlated
with the Fourier spectrum of that signal directly for a fixed
scale parameter.”’” The WS of r(s) is defined as P} (z,f)
=|W,(u,s)|?, the time ¢ being the center value of the wavelet
translated by u and the frequency f is computed directly by
the scale factor as f=fg/s, fg being the sampling frequency
(rigorously speaking f is the scale frequency and in general it
is different from the Fourier frequency, but for the complex
Morlet wavelet with f-=1 the two frequencies are nearly
identical).?®

Figure 2(b) shows the WS (arbitrary units) computed for
the voltage signal of the inset of Fig. 2(a). We use the fol-
lowing parameters: N=22, fz=300, and f-=1. As can be
noted, the results of our computations are consistent with the
data displayed in Fig. 6 of Ref. 16.

To perform time-frequency analysis of micromagnetic
simulations, we introduce a generalization of the micromag-
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FIG. 3. Theoretical computations for J=1.5X10% A/cm?, H
=60 mT applied along —45° with respect to the easy axis, and T
=300 K of (a) micromagnetic wavelet scalogram (N=22), (b) the
power spectrum computed by the micromagnetic spectral mapping
technique, and (c) the temporal evolution of the normalized magne-
toresistance signal r(r) computed by numerically solving the
Landau-Lifshitz-Gilbert-Slonczewski as described in the text. (d)
micromagnetic wavelet scalogram computed for same field and
temperature of (a) and for (top) J=2X 108 A/cm? and (bottom) J
=3x10% A/cm?. The color bar of (d) is the same of (a).

netic spectral mapping technique (MSMT) (Refs. 29 and 30)
the micromagnetic WS (MWS). The MWS is the sum over
all the computational cells (N) of the WS of the magnetore-
sistance temporal evolution computed for each cell Wi(u,s),

Ne
Piy(t,f) = NLE Piy(L.f) 2)
Ci=1

The scale set {s;};=; n. is determined directly by the spec-
trum computed with the MSMT with the procedure described
above [see Fig. 2(a)]. In general, this study can be also per-
formed for each component of the magnetization. Figure 3
shows (a) the MWS (N=22,f5=10%), (b) the power spec-
trum computed by the MSMT, and (c) the temporal evolution
of the normalized magnetoresistance signal r(z) for the fol-
lowing value of current density (J), external field (H), and
temperature (7): J=1.5X10% A/cm?, H=60 mT applied
along —45° with respect to the easy axis, and 7=300 K.

The MWS is able to detect the intermittent features of the
r(r) [for example, Fig. 3(a) =9 ns and =25 ns), a char-
acteristic which cannot be find out via Fourier analysis. Our
numerical experiment shows several interesting results. The
excited modes of a spin-torque nano-oscillator are turned off
(for nanosecond interval) in an intermediate static magnetic
configuration characterized by output very small power (in-
termittent nonperiodic behavior) and then re-excited. The
magnetization dynamics is characterized by a main mode
with a frequency which moves in time in a range of a few
hundreds of megahertz at least. This mechanism sets the
minimum value of the linewidth of the mode. This frequency
modulation has been also predicted by stochastic nonlinear
theory.?! As the current increases, first a region in which the
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intermittences disappear [see Fig. 3(d) top which shows the
MWS for J=2X 103 A/cm?] then a region where the inter-
mittences reappear [see Fig. 3(d) bottom which shows the
MWS for J=3X10% A/cm?]. This gives rise at least to a
linewidth broadening with a Lorentzian shape added to the
ideal power spectrum.3!-3

This wavelet-based analysis together with micromagnetic
simulations is able to investigate completely the time-
frequency behavior of magnetization dynamics from LLGS
equation including the transient dynamics in magnetization
switching processes and the existence of persistent but non-
periodic current-driven magnetic states. From a more general
point of view, it can be used to analyze all the physical
problems where a systematic nonstationary analysis has to be
performed.

IV. CONCLUSION

In conclusion, experiments and simulations of nanoscale
exchange-biased spin-valves show very rich dynamical be-
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havior. At high nonlinear dynamical regime, even though the
frequency of the main excited mode decreases monotonically
as function of current, the integrated output power shows
non-monotonic behavior with a minimum related to a change
in the oscillation axis of the magnetization. This is a crucial
point to take into account in the design of spin-torque nano-
oscillators.

By combining micromagnetic simulations and time-
frequency characterization of the magnetization dynamics,
we observe together a frequency modulation, current-
dependent nanosecond intermittent disappearing and reap-
pearing of the magnetization dynamics, and the instanta-
neous microwave output power. This aspect has to taken into
account to improve theoretical prediction of linewidth of a
spin-torque nano-oscillator.
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